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Experiments have been made to investigate the motion generated by a body 
moving along the axis of a uniformly rotating fluid. 

Part of the investigation concerns the motion generated in a cylinder whose 
radial dimensions are much greater than those of the body. Measurements have 
been made of the velocities of particles on the axis of rotation both ahead of and 
behind the body, and the results indicate that there is a significant axial motion 
generated by the body over a wide range of Rossby numbers. A measurement of 
the instantaneous velocity profile ahead of the body, determined as a function of 
the radius, agrees fairly well with a low Rossby number calculation of the flow 
due to a circular disk (Morgan 1951). In  addition, the forward influence of the 
body has been measured as a function of the Rossby number and from these 
results it is suggested that the body has a finite influence far upstream at all 
Rossby numbers and that the blocking phenomenon first reported by Taylor 
(1922) probably occurs for all values of the Rossby number (Ulna)  less than a 
critical value which is about 0.7. 

Experiments have also been made in a long cylindrical tube which acts as 
a wave guide. At large distances from the body the separate effects of the various 
modes can be observed and hence it is possible to measure the flow corresponding 
to an individual wave-number : these measurements show that, as a result of the 
Doppler effect, the motion a large distance ahead of the body is different from 
that far behind (see Lighthill 1967). Moreover, the experiments indicate that 
no disturbances propagate ahead of the body when its velocity exceeds the 
maximum group velocity in the fluid, but that disturbances trail behind the 
body when its velocity is far in excess of the maximum group velocity. Measure- 
ments of the maximum group velocity are in good agreement with the theoretical 
value. 

1. Introduction 
The experiments described in this paper were made in order to obtain some 

detailed measurements of the flow generated by a body moving along the axis of 
a uniformly rotating fluid. The motions have been investigated over a wide range 
of values of the Rossby number. 

Observations of the flow due to an obstacle of radius a moving with a speed U 
along the axis of rotation of a fluid which has angular velocity Q suggest that 
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a column of fluid is pushed ahead of the moving body when UlQa is less than 
about 0.2 or 0.3 (cf. Taylor 1922; Long 1953). Taylor’s (1922) experiment used 
a very light sphere painted in stripes to make visible any rotation. When the 
sphere has no axial motion it naturally rotates with the fluid, but if it is allowed 
to move along the axis with a velocity U such that UlQa is greater than about 
1/n, Taylor found that the sphere ceases to rotate with the fluid. If, on the other 
hand, the sphere moves slower than this it continues to rotate with the fluid 
and an investigation of the flow with coloured water indicated that a column of 
fluid, of the same diameter as the sphere, is pushed along in front of the sphere. 
This blocking effect was also observed by Long (1953) using a streamlined body 
in a tube of radius 4a, but he estimated that fluid is pushed ahead of the body 
only when UlQa is less than about 0.23. In  addition Long observed wavelike 
motions extending a great distance behind the b0dy.t 

An investigation of the blocking phenomenon has also been made by Benjamin 
& Barnard (1964) in the course of their study of the motion of a cavity progressing 
along the axis of a long column of rotating liquid. They observed the flow ahead 
of the cavity from the distortion of sheets of tellurium dye that spanned the tube 
and found substantial forward influence of the cavity at values of U / Q b  z 0.38 
(where b is the radius of the tube), but the nature of the experiment was such that 
this parameter could not be varied. From their measurements Benjamin & 
Barnard made a rough estimate of 0.48Qb for the group velocity. 

Recently, Maxworthy (1968) has investigated the motions in a short cylinder 
when Ulaa  < 0.1. An important feature of his experiments is the examination 
of the boundary layers on the sphere: the fluid ahead of the sphere and within 
the Taylor column rotates more slowly than the obstacle; fluid is sucked smoothly 
into the Ekman layer on the front of the sphere, passes to the rear of the obstacle 
and is ejected from the layer behind the sphere. Maxworthy also found that the 
flow from the rear Ekman layer is not well behaved and has the appearance of 
a mild vortex breakdown. 

The theoretical work of Morgan (1951), Stewartson (1952) and Bretherton 
(1967) indicates that a body, started moving along the axis of rotation at  a uni- 
form velocity such that UtQa < 1, ultimately has a stagnant column of fluid 
extending far ahead of and behind itself. Bretherton’s analysis, which was made 
for a strictly two-dimensional flow, investigates the motions at  large but finite 
times; the solution covers the regions far from the body where the disturbance 
has only just arrived, the region near the edge of the Taylor column, and also the 
region near the body: in all cases the development of the flow may be attributed 
to inertial waves. 

Studies of the motions at finite values of the Rossby number have been made 
by Stewartson (1958, 1968) and Lighthill (1967). Stewartson (1958) attempted 

t Long found in some of his experiments that the wavelength of the motions was slightly 
less than the theoretical value; he attributed this to the low value of the ratio of the length 
to the diameter of the cylinder used for the experiments. Recent measurements (Pritchard 
1968) medc in cylinders of larger length-to-diameter ratios confirm these results : tho 
motions whose wavelength is less than about 0.4 times the length of the cylinder are in 
general agreement with Long’s theory, whereas the longer wavelength motions have a 
smaller wavelength than the theoretical value. 
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to give a theoretical explanation of Taylor’s (1922) experiments: his results 
suggest that when U/Qa = 0.348 no axisymmetric steadily translating solution 
exists for an inviscid fluid in which the flow far upstream is merely rigid-body 
rotation;? moreover, his calculations indicate that, at higher Rossby numbers, 
the drag on the sphere has unusually large values in the absence of upstream 
influence. Thus Stewartson proposes that ultimately, for all Rossby numbers 
less than a critical value which is a t  least 0.348, the flow far upstream differs 
substantially from that of uniform rotation. Lighthill’s (1967) analysis shows 
that, when a body moves along the axis of rotat,ion, those waves with a group 
velocity greater than the velocity of the body propagate indefinitely far ahead 
of the body without attenuation. Hence, if all wave modes are excited, the body 
should have a forward influence at  all Rossby numbers. Following these con- 
siderations, Greenspan (1968) has conjectured that a column of liquid is trapped 
in front of the body (the blocking phenomenon)$ a t  all Rossby numbers less than 
about 0-7. Greenspan bases his suggestion on the solution for the motion generated 
by a disk that moves slowly along the axis of rotation after an impulsive start: in 
the flow ahead of the disk there is a ‘stagnation point ’ behind which exists a 
reverse cellular flow. This stagnation point advances with a velocity 0.675Sla 
and Greenspan suggests that, as a rough estimate, when the disk moves faster 
than this the blocking effect will not occur. The present experiments indicate 
that there is a forward influence at  all Rossby numbers, although the Taylor 
column is very feeble at  large values of the Rossby number, and that the blocking 
effect probably occurs for all Rossby numbers less than some critical value which 
is about 0-7. Stewartson’s (1968) analysis supposes the motions to be governed 
by Oseen’s equations from which he deduces that, even at  very large Rossby 
numbers, there is a feeble wake both upstream and downstream of the body, but 
the analysis predicts the incorrect sign for the swirl velocity in the upstream 
wake; at  small Rossby numbers he finds that strong wakes are set up, the 
upstream wake being almost like a ‘plug’ flow. In  very recent correspondence, 
Dr T. B. Benjamin has indicated that he has found a proof (using the full non- 
linear equations of unsteady motion) that in inviscid rotating fluids, bodies 
moving axially have a finite forward influence a t  all Rossby numbers (except 
when UjQb > 0.522 for flow in a tube of radius b ;  0.522Qb is the critical speed for 
infinitesimal waves). 

An additional feature of Lighthill’s (1967) analysis is that, as a result of the 
Doppler effect, a given wave mode is more powerfully excited ahead of the body 

t This singularity is a spurious consequence of truncation (Miles 1968), but Stewartson’s 
(1969) more recent computations still indicate unusually large drag coefficients in the 
absence of an upstream influence. On the other hand, Miles (1969b) suggests that, for values 
of UIRa greater than about 0.9, the difference between Stewartson’s calculations and 
observation may be a consequence of viscous separation effects, and that at lower Rossby 
numbers the solution implied by Long’s hypothesis may be invalid because of local reversals 
of the flow leading to instabilities. 

$: The term ‘blocking’ refers to the situation in which a quantity of dyed fluid placed 
in front of the body is pushed ahead of it for all time. On the other hand a body may have 
a finite ‘foward influence’ extending far upstream but give rise to a flow in which dyed 
fluid placed in front of the body does not remain there for all time. 
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than behind it. Measurements on a single wave mode, made in the course of the 
present experiments, are in agreement with this prediction. 

Two sets of experiments are describedin the paper. One set concerns the motion 
in a cylinder of large radial extent; the experiments were made in such a fashion 
that the ends of the container had only a very small influence on the flow. The 
other experiments were made in a long cylindrical tube: in these experiments 
attention was, necessarily, focused on the way in which the normal modes propa- 
gate along the tube. Since great care is needed in making measurements in 
rotating fluids, some of the more technical aspects of the work are discussed in 
detail (for example, the measurements made on the normal modes) in order to 
give confidence in the experimental technique and results. 

2. Experimental apparatus and procedures 
Flow measurement techniques 

The measurements of the fluid motions were made from observations of dye 
traces produced by the pH-indicator technique described by Baker (1966). This 
flow-visualization technique employs a pair of thin platinum wires (0.001 in. 
diameter for the present experiments) immersed in a solution containing the 
indicator Thymol Blue. The solution initially has its pH very near that of the 
indicator change and when a small voltage is applied between the wires the 
change of pH in the immediate vicinity of the cathode causes the indicator to 
turn blue, thereby serving to mark a thin cylindrical region of fluid around the 
wire. The movements of these dye traces were recorded on 16 mm cine film, and 
measurements of the relative positions of a trace were made directly from the 
film using a projection microscope. The microscope used for the measurements 
has a movable table, on which the film is placed, and which may be positioned 
to 0.0001in. An image of the film was projected onto a screen and magnified 
by a factor of 10,20 or 50, so that distances could be measured from the projected 
image or found as lengths on the film. In many of the experiments this method 
has detected a displacement of a fluid particle of less than 0.01 in. 

Apparatus to investigate the motions in aJluid of large radial extent 

A set of measurements was made in a Perspex cylinder (12in. in diameter and 
24in. in length) in which disturbances were generated by a sphere (lain. in 
diameter) which was towed along the axis a t  a steady speed. The fluid motions 
were recorded on cine film by photographing the dye traces generated at  two 
platinum wires that stretched diametrally across the cylinder: one wire was 
located about loin. from the bottom of the container and the second wire about 
6in. from the bottom. The arrangement is shown schematically in figure 3, to 
follow. An attachment was put on the cylinder to provide a plane viewing 
surface in order to reduce to negligible proportions the optical distortion intro- 
duced by the curved walls of the container. 

The complete apparatus was mounted on a turntable which was rotated at 
a uniform angular velocity: this arrangement meant that the sphere rotated with 
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the same angular velocity as the container, even when it was being towed. 
Taylor (1922) showed experimentally that a sphere with a very small moment of 
inertia stops rotating if moved quickly along the axis of a rotating fluid, therefore 
the imposed rotation of the sphere may, in the experiments described below, 
affect the dynamics. On the other hand, it should be noted that the flow in the 
boundary layers on the sphere (cf. Maxworthy 1968) consists of a suction into 
the boundary layer on the forward half of the sphere and hence it is anticipated 
that the ‘Taylor column’ ahead of the sphere is not as powerfully excited as it 
would be if the fluid were inviscid; moreover, Stewartson (1968) has suggested 
that, at high Rossby numbers, there are only small differences in the forward 
wake between the cases in which the body rotates and in which it does not rotate. 

For all these experiments the Ekman number (v/Ra2) was less than 10-3 and 
the Reynolds number (2aUlv) was larger than 500, where v is the kinematic 
viscosity of the fluid. 

Apparatus to investigate the motions in a long cylindrical tube 

The apparatus used to investigate the motions due to a body moving along the 
axis of a long cylindrical tube is shown schematically in figure 1. The Perspex 
cylinder, which is 2in. in diameter and 6ft in length, is mounted on a roller 
bearing and is held vertical by three small roller bearings near the top. In  the 
experiments the tube was rotated at a steady anguIar velocity (usually about 
2nrad/sec) by means of a belt drive near the bottom. The long cylindrical body 
near the top of the tube was used to generate the disturbances to the primary 
flow. 

About half the body was immersed in the liquid, and the tube and body were 
rotated for about 10 min to enable the liquid to spin up to a state of rigid-body 
rotation.? The body was then displaced along the axis at a steady speed and the 
resultant disturbance observed, by use of the Thymol Blue technique, as it 
progressed along t,he tube. The positions of the platinum wires, at  which the dye 
lines were generated, are shown in figure 1; the wire that is parallel to the axis 
of rotation was used to produce a cylinder of dyed fluid by generating the ‘dye ’ 
before the liquid had reached rigid-body rotation: this cylinder of dyed fluid was 
used to give information about the radial displacements associated with the 
disturbances. The movements of the dye lines were recorded on cine film and, 
by using the arrangement of mirrors shown in figure 1, two sections of the tube 
were photographed on each frame of the film. 

t Theoretical calculations (Pritchard 1968) show that, for water in an infinitely long 
2 in. diameter tube, the flow differs from rigid-body rotation by less than 0-5 yo after 5 min ; 
the same fluid in a tube of k i t e  length spins up more rapidly than this. 
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Perspex tube, radius b 

FIGURE 1. Schematic representation of the apparatus used to investigate 
the motions in a long cylindrical tube. 

3. Motions in a fluid of large radial extent 
The form of the disturbances 

The motion ahead of and behind the sphere has been determined from the dis- 
tortion of a dye line normal to the axis: an example of the way the line distorts 
when the sphere is moved towards it is shown in figure 2, plate 1. Prom a series 
of cine photographs of this kind the displacement of a particle on the axis is 
easily determined (because of the axial symmetry of the motions) as a function 
of the time, and the velocity of the particle is computed from a smooth repre- 
sentation of this data.t However, restrictions on the length of the vessel have 
only allowed observations of time-dependent motions. Maxworthy (1968) has 
shown, for steady-state motions at  low Rossby numbers, that the ends of the 
container have a marked effect on the flow field, but in the present time-dependent 
experiments a posteriori arguments (based on the measurements of the forward 

similar results is included in the discussion on the motions in a long tube. 
t Details of the particle displacements care not given in this paper, but an example of 
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disturbances as a funct'ion of the Rossby number, and assuming exact reflexion 
of the waves) indicate that the observed flows are not likely to be influenced by 
more than 5 %, in the worst case, by the presence of the ends.? 

Resultsof some of these experiments are shownin figure 3 (a).  The curve labelled 
A shows the motion ahead of the sphere which had been moved towards the 
observation point at t = 0;  initially the sphere was 20.3 radii from the nearer 
platinum wire. The Rossby number (UlQa) for experiment A was 0.68, and 
there is a considerable forward influence due to the sphere: the observed dye 
particle has attained half the velocity of the sphere when it is 6 radii away, and 
is accelerated to 0.65U when the sphere is still 4.5radii from it. 

A similar experiment is presented in curve B: in this case the Rossby number 
is 0.83 and the motions are shown at two positions along the axis. At t = 0 the 
sphere was 14.6radii from wire 1; its motion was stopped at  Qtl2n = 2.38. Again, 
substantial disturbances propagate ahead of the sphere, but they are not as 
strongly excited as in experiment -4. This experiment was repeated at  the same 
Rossby number, but instead of stopping the sphere near the wire its motion was 
arrested a t  n = 2.3 and then reversed: the resulting flow is shown in curve C. The 
initial portions of curves B and C are almost identical, but shortly after the 
motion of the sphere is reversed its effects are noticeable at  both dye traces and 
eventually there is a return flow.$ The different forms of the velocity curves at  the 
two observation points clearly demonstrate the dispersive effects of the medium. 

Curve D shows the motion behind the sphere when it is moved (at t = 0)  away 
from the observation point at a Rossby number of 0.98. Initially the sphere 
was 8-3 radii from wire no. 2. The results show that a considerable disturbance 
occurs behind the sphere. 

A comparison of the results u2 (experiment B )  with theoretical estimates of 
the forward influence is shown in figure 3 ( b ) .  One of these theoretical estimates is 
the flow generated by a dipole moving along the axis of rotation (Miles 1969a) 
and the other estimate has been made from the low Rossby number motions 
generated by a disk moving along the axis of rotation (see Greenspan 1968, and 
equation (2) to follow). The theory of Miles is based on the hypothesis of Long 
(1953) that the disturbances far upstream are arbitrarily small, whereas the 
other estimate attributes the motions entirely to inertial waves generated by the 
body and hence may lead to finite disturbances far upstream. The latter theory 
is not strictly applicable to experiments made at Rossby numbers of O(l),  but 
if the motions at  the time and point of observation have been influenced only by 
wave modes whose group velocity is much greater than the velocity of the body, 

It has been shown by Moore & Saffman (1968) that the Taylor column in a short 
cylinder is different from the column formed in the unbounded case. For a cylinder of 
depth h they showed that if hla < E-t, where E = v/aZC2 is the Ekman number, the 
swirl is O( UE-6) in contrast to the swirl O( U )  in the unbounded (hla $ E-1) case. However, 
this flow needs a time J(h2/C2v) to be established and for shorter times the effect of the 
ends is to reflect the waves. In the present experiments the spin-up time is about 3-5 min 
which is to be compared with a time of about 10 sec for the motion of the body. 

1 Not shown in these results, but evident from the measurements of the displacements, 
is an additional, fairly weak, disturbance apparently generated by the discontinuity in 
the motion of the sphere. It was observed on a number of occasions and its propagation 
speed, in all cases, was about 1.6sla. 

29 Fluid Mcch. 39 
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F r a m  3(a). The motion due to a sphere moving along the axis of a uniformly rotating 
fluid of large radial extent. n( = Rt/Sn) is the number of the tube periods after the be- 
ginning of the motion. A ,  sphere moved towards wires, UlRa = 0-68; B, sphere moved 
towards wires, U/Ra = 0.83; C, sphere moved towards wires, then away, U/Qa = 0.83; 
D, sphere moved away from wires, UIRa = 0.98. 

the theory should be a reasonable approximation to the experiments. Thus, to 
compute the low Rossby number estimate of figure 3 ( b )  we ;tssume that the 
body moves a negligible distance along the axis during the course of the experi- 
ment, so that the distance from the body is given by its value at  the beginning 
of the motion. We see that the agreement of both theories with the experimental 
results is fairly good, but it isstressed that, inview of the approximations involved, 
no particular significance should be' placed on the slightly better representation 
of the data given by the estimate made from the low Roasby number theory. 

The instantaneous velocity projile 

A measurement has been made of the instantaneous velocity profile ahead of 
the sphere, determined as a function of the radius. The measurement was made 
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FIGURE 3(b ) .  Comparison of uz/) U )  of figure 3(a) (experiment B )  with theory. 

from the distortion of a dye trace of the kind shown in figure 2, plate 1, with the 
assumption that the radial velocities are negligible compared to the axial 
velocities, so that the particle paths are nearly parallel to the axis. 

Morgan (1951) has calculated the development of the flow field due to a disk 
suddenly started moving along the axis. Although this calculation is based on the 
assumption of very small Rossby numbers, it may (as suggested above) give 
reasonable estimates of the motions observed in experiments made at  high 
Rossby numbers, if we restrict our attention to that part of the flow field which 
is influenced only by wave modes whose group velocity is much greater than the 
velocity of the body. Thus we look at that part of the Taylor column which is 
influenced only by wave modes with large transverse wavelengths; in general, 
transverse wavelengths greater than 2n-/(2SLat/x) affect the motion at  the par- 
ticular time and point under consideration. 

An experimental curve of the instantaneous velocity profile is given in figure 4. 
This experiment was made at a Rossby number of 0.83 and the value of 2Qatlx 
is 1.8, assuming that x is determined from the position of the sphere at  t = 0. 
The theoretical curve is the velocity profile at 2Qatlx = 1.8 for the axisymmetric 
flow generated by a circular disk (cf. Greenspan 1968 and Morgan 195'1). The 
agreement between the experimental results and the theoretical calculations is 
fairly good, especially in view of the fact that, at the instant of measurement, 
the centre of the sphere was only 4.5radii from the dye trace, and that the 
experiment was made at  a Rossby number of O(1). 

29-2 
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Radius+ F 

FIGURE 4. The instantaneous velocity profile ahead of a sphere moving along the axis 
of a uniformly rotating fluid of large radial extent. t / x  = 1.8. - , theory (circular 
disk) ; 0, experiment. 

The forward inJEuence as a function of the Rossby number 
An experiment has been made to determine the influence ahead of a body as 
a function of the Rossby number. The experiment is slightly complicated because 
we are forced to make the measurements before the flow has had time to reach 
its steady state. Thus, suppose the situation at  time t after the beginning of the 
motion of the body is as shown in the sketch (figure 5); from dimensional con- 
siderations the velocity is determined by a relation of the form 

u/U = f (U/Qa,x /a ,  a t ) .  (1) 

Hence we see that it is a relatively simple matter to measure u/ U whilst keeping 
both x1a and at constant, but allowing U/Qa to vary. A measurement of u /U 
has been made at  x/a = 4 and Qt = 12-5; the results are given in figure 6. Also 
shown in figure 6 are two (fairly crude) theoretical estimates of the steady state 
results. These estimates are based on low Rossby number theories with the 
assumption that, at high Rossby numbers, the waves whose group velocity is less 
than the velocity of the body are eliminated from the Taylor column ahead of 
the body. 

For example, if we consider the axisymmetric flow generated by a disk moving 
slowly along the axis we see that the velocity (u) of a particle on the axis is 
(cf. Greenspan 1968, equations 4.3.1 and 4.3.13) 

77 

2 
= -{Si(ZQat/x) - sin (2Qat/x)}. 
a- 
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FIGURE 5. Schematic representation of the method used to determine the motion ahead 
of a sphere moving along the axis. - , distorted dye line; - - - --, original line; ---, 
sphere position at time t .  
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measurement of the velocity ahead of a sphere as a function of the Rossby 
= 4;  L2t = 12.5. Curves (a\ and ( b )  are approximate theoretical estimates \ ,  \ I  

of this function. ___ , (a )  Morgan (circular disk) ; -.-, (b)  Bretherton (two-dimensional 
theory) ; - - is equation (2) with x represented by its value a t  t = 0. 
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The group velocity of a mode with wave-number k is 2 /k ,  and hence the upstream 
motions after a time t and at a distance x are determined by those wave modes 
whose group velocity C, exceeds x/Qat. For bodies moving with a velocity U of 
O( 1) it is anticipated that the upstream motions will be influenced only by those 
wave modes whose group velocity exceeds that of the body. Accordingly a 
‘rough) estimate of the steady state influence of the body is obtained by taking 
finite values for the upper limit 2Qa/U (where U now replaces .It) of the integral 
(2), instead of the infinite value this limit has for the low Rossby number theory. 
With the integration limits taken thus, equation (2) represents one of the theo- 
retical curves of figure 6; one of the others is the analogous result obtained from 
the two-dimensional flow generated by a cylinder (cf. Bretherton 1967, equation 
(6.8)). But it is stressed that these are only rough estimates since we are neglecting 
both the non-linearities and the Doppler effect, and we are assuming that the 
spatial combination of the wave modes is the same as that of the low Rossby 
number case. Yet, in spite of the approximate nature of this estimate, we see 
from figure 6 that the theoretical curve (a) gives a very good prediction of the 
experimental results determined at  a finite time after starting the motion of the 
body. It is felt that this agreement suggests that the motion of the sphere 
generates the complete spectrum of wave modes and hence (see Lighthill 1967) 
the influence would extend indefinitely far upstream in an unbounded inviscid 
fluid. On the other hand, Miles (196971) has shown it is possible to give a very good 
theoretical account of the results of figure 6 on the basis of a local disturbance 
(namely one that becomes arbitrarily small at large distances from the obstacle) 
generated by a dipole. 

The third theoretical curve of figure 6 represents equation (2) as it stands, with 
x taken to be the distance of the sphere from the dye line at  t = 0. U7e see that, 
as with the date of figures 3 and 4, this theoretical estimate represents the data 
fairly well. 

4. Motions in a long cylindrical tube 
Preliminary considerations 

In view of Taylor’s (1922) paper, which showed that a very light sphere moving 
slowly along the axis rotates with the same angular velocity as the fluid, some 
preliminary experiments were made to determine the importance of having the 
sphere rotate with the fluid. If the sphere moves along the axis but is not allowed 
to rotate, the fluid motions may be significantly influenced by the secondary 
flow generated by the Ekman layers on the body. For example, an experiment 
was made in which a 1 in. diameter sphere was held motionless in the long, 2 in. 
diameter tube, and the tube rotated at  a steady speed of about 2nrad/sec; due 
to the presence of the sphere a strong secondary flow was set up in which the 
axial velocity was found to be 0*23Qa, where a is the radius of the sphere. 
Accordingly an experiment was made in which a body was moved slowly along 
the axis of the tube and the velocity of a particle on the axis measured at a position 
45 tube radii ahead of the body. It was found that, when the body did not rotate, 
the velocity at  this point was about 20 yo greater than when it rotated. On the 



Axial motion of a body in rotatingjuid 455 

other hand, Stewartson’s (1968) calculation indicates that, a t  high Rossby 
numbers, this effect is probably not important. In  all the experiments described 
the body was made to rotate at  the same angular velocity as the tube. 

The disturbance due to a body moving along the axis 

In  figure 7, plate 2, is a sequence of photographs showing, at  successive 
half-periods of rotation, the passage of a wave along the tube. The dye line 
indicating the motions originally stretched across a diameter of the tube and 
was coincident with the platinum wire near the top of the photograph. A length 
scale is indicated by the outer diameter of the tube: it is 23 in. The wave form in 
this experiment was generated by moving the body along the axis a distance 
of 1-5b (where b is the radius of the tube) and then stopping it. 

The velocity distribution in this wave has been determined by measuring 
the velocity of the particle on the axis, which is located from the symmetry of 
the dye line; some results are given in figure 8. The motions were recorded at two 
stations: one was 25 tube radii from the body and the second a further 16 radii 
along the tube.? The unbroken curve shows the displacement of a fluid particle on 
the axis when the body was moved towards it and the dashed curve represents the 
particle displacement when the body was moved in the opposite direction. (It 
is not apparent from figure 8 that these displacements are actually in opposite 
directions.) The particle velocities were derived from the (smoothed) results for 
the particle displacement. The results indicate that the motions ahead of the body 
are of a similar form to those behind, except that the maximum velocity within 
the two wave forms is slightly different. At the first observation point the particle 
moved along the axis of the tube a distance of about 1.2 radii, stopped for a short 
time, and then was accelerated into motion again: this second movement is due 
to the arrival of the second mode of the motion and is discussed in greater detail 
below. 

The normal modes 

A wave form progressing along a cylindrical tube and constituting only a small 
disturbance to the primary state of uniform rotation may be represented by an 
axial velocity distribution of the form (cf. Long 1953; Benjamin & Barnard 
1964) W 

u = E a,Jo(k,r)j’n(x, t), (3) 

where x is the axial co-ordinate and J, is the zero-order Bessel function of the 
first kind; f, is some function of the axial position and of the time; the radial 
wave-number k,, is determined by 

n = l  

knb (4) 

in which b denotes the radius of the tube and j, , is the nth positive zero of 4. 
i The amplitude of the wave form decreases as it progresses along the tube due to dis- 

persion and to viscous effects in the boundary layers on the wall of the tube. Approximate 
calculations (Pritchard 1968) suggest that these two factors account for the change of 
amplitude of the wave form. This contention is supported by measurements of the ampli- 
tude change of a solitary wave (which does not disperse) produced under similar conditions : 
in this case the viscous effects done give a good prediction of the amplitude change. 
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First observation point 
25 b from obstacle 

Second observation point 
41 b from obstacle 
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Time scale: number of tube periods 

FIGURE 8. The motion due to a body moved along the axis of a long cylinder of rotating 
liquid a, distance of 1.5b. UlQb = 0.1, alb = 0.5. - , motions ahead of the body; 
___ , motions behind the body. 

Hence, if at  a given instant and position in the tube the velocity distribution 
is known, we can determine the normal-mode decomposition of the wave form. 
Thus, for example, suppose the axial velocity has a ‘top-hat’ distribution as 
shown in figure 9: the coefficients 01, are then easily evaluated by the usual method 
for orthogonal series, a Fourier-Bessel series in this case, and we find that 

We anticipate that a body of radius a, moving slowly along the axis, generates 
a velocity distribution which is approximately of the form shown in figure 9: 
accordingly the amplitudes of the modes should be fairly well represented by ( 5 ) .  
When alb is greater than about 0.55 the sign of the second mode is negative and 
thus, on the axis, it  has a velocity in the opposite direction to that of the funda- 
mental mode. 
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FIGURE 10. A comparison o f  the motions due to two bodies of different diameters which 
were moved along the axis. - - - - , (a)  a/b = 0.50, U/Ob = 0.100, body moved a distance 
15b. -, (b)  alb = 0.70, U / R b  = 0,045, body moved a distance 0.86. Initially the 
body was 256 from this observation point. 

The group velocity of each mode is directed along the axis and has a magnitude 
of 2Llb/j1,n (Benjamin & Barnard 1964). Thus, if an obstacle is moved along 
the axis a short distance and stopped, the various modes will separate as the 
wave progresses along the tube. To demonstrate this effect an obstacle with 
alb = 0.5 was moved along the axis a distance of 1.5 tube radii and stopped; the 
resulting wave form was observed at a station 25 tube radii ahead of the body, 
and the results of this measurement are given in figure 10. When alb = 0-50 
we see from (5) that a1 = 1.23 and aZ = 0.27; the velocity measured in the wave 
form was 0.82U and the results indicate the arrival of the second mode. This 
experiment was repeated with a body for which alb = 0.70, so that a1 = 1-98 
and a2 = - 1.36. In  this case the body was moved along the axis a distance of 
0.8 tube radii. From figure 10 we see that the maximum velocity in the wave form 
due to the fundamental mode was 1-42 U and that the second mode produced, 
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on the axis, anegative velocity of amplitude 0.68 U .  (The small oscillation between 
the two modes arises from the cessation of the obstacle motion.) Thus, taking 
into account the viscous effects, which have a greater influence on the second 
mode, it appears that the decomposition ( 5 )  gives a fairly good description of 
the motions.? 

Time scale (tube periods) 

FIGURE 11. The radial displacements due to 8 wave form travelling along a tube. Measure- 
ments made a t  rJb = 0.522, Ulnb = 0.054, alb = 0.71. - , (a) experiment; ---, 
( b )  deduced from the axial velocity distribution. 
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FIGURE 12. The distorted shape of a dye line; the shape is compared with 
a Jo distribution of the same amplitude on the axis. 

The radial displacements due to the fundamental mode have been measured. 
These measurements were made from a cylinder of dye produced by the wire 
stretched parallel to the axis; the results are shown in figure 1 1 where the diameter 
of this cylinder, at  a fixed axial station, is given as a function of the time. The 
Rossby number, UlQb, was 0-054 and a particle at a radius of 0.55b was displaced 
by about 0.05b. The axial velocity distribution was also measured in this experi- 

t To put these results into perspective the first two terms of the modal distribution 
have been calculated for slightly different velocity profiles. For a given 1: and t we find that : 
(a )  if u(r) = 1 -$ ( r /b )  then a, = 0.880; a2 = - 0-112; ( b )  if u = 1 - 2 ( ~ / b ) ~  then a, = 1.29; 
az = -0.542. 
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ment and was used in the way indicated below, to give an independent estimate 
of the radial displacements; these results are shown in figure 11 and there is good 
agreement between the two curves, especially if we take into account the fact that 
the direct measurement of the radial displacements is difficult. 

The experiments indicate that the wave form due to the fundamental does 
not disperse much as it progresses along the tube and hence it is represented 
fairly well by 

u = Jo(k,r) #(x - ct) ,  (6) t  

where c = 2R/k1 and g5, the velocity on the axis within the advancing wave form, 
keeps a constant value a t  x = (2R/k1)t .  The radial velocity follows from con- 
tinuity and is 

The radial displacement is now found by integrating (7) and is given by 

= J,(k,r) ($2 - #l)/Q (8) 

where #1,2 are the velocities at  the beginning and end of the time under con- 
sideration. This result was used to deduce the radial displacement from a measure- 
ment of the axial velocity distribution. 

Knowing that the radial displacements are very much smalIer than the axial 
displacements, we see, from (B), that a diametral line of particles will distort 
to the form Jo(klr). The measured shape of such a dye line is shown in figure 12 
and is compared with the curve of J,(k,r) which has the same magnitude on the 
axis as the experimental curve: the agreement between the two curves is very 
good. 

t Dr Kathleen Trustrum of the University of Sussex has pointed out to me that (6) is 
an exact solution of a ‘long wave’ approximation to the non-linear equations. With 
the ‘long wave’ approximation, avlax is small compared with au/ar in the expression for 
the azirnuthd component of the relative vorticity, and the equations for axisymmetric 
flow referred to axes rotating with angular velocity Cl about Ox are 

aw aw aw vw 
-+v-+u-+-+2Rw = 0, 
at ar ax T 

a a 
- ( rv )+- ( ru )  = 0, 
ar ax 

where (u, v, w) are the velocity components parallel to the (2, r ,  8)  directions. It is now 
easily demonstrated that 

u = J,(k,r) +(z-cCt), v = -J3!5? C’(x-ct), w = -J1(klr) qqz-ct), 
k, 

P P 
- = cJ,(k,r) f$(x-ct)+(J;+J:) 2 ,  
P 

where c = 2R/k,, is an exact solution of these equations. A similar solution holds for the 
two-dimensional flow of a Boussinesq fluid. 
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The wave motions as a function of the Rossby number 

A series of measurements was made to determine the form of the motions a t  
different Rossby numbers. The wave forms were generated by moving the body 
at  a constant velocity along the axis a distance of 1.5 tube radii and then stopping 
the motion: the resulting wave form was observed at  positions 25 and 40.5 tube 
radii from the initial position of the body. The body could be moved either 
towards or away from the observation points. 

The theory of Lighthill (1967) indicates that, due to the Doppler effect, a given 
wave mode propagated ahead of the body is more powerfully excited than is the 
corresponding mode to the rear. Unfortunately i t  is difficult to observe this in 
a fluid of large radial extent, because of the continuous spectrum of wave modes, 
but in a long tube, where there is a discrete set of wave numbers, we can make 
observations on a single mode. Hence one of the purposes of this experiment is to 
see if the Doppler effect is observed in practice. 

In  each experiment the body was given the same displacement and was moved 
at  the same speed; the Rossby number was varied by changing the angular 
velocity of the tube. Each pair of results (i.e. for the motions ahead of and behind 
the body) was obtained at  approximately the same rotation rate s2 and therefore 
the effects of dispersion and viscous damping should be similar for both the wave 
forms of any pair of results. 

0.5 
8 

0 

UlQb + 

FIGURE 13. The motions, at various values of the Rossby number, generated by a body 
(alb = 0.5) moved along the axis of a tube. The flow was observed at positions 25b (sub- 
script 1) and 40.5b (subscript 2) from the body. - , ( a )  forward motions; ---, 
(b)  motions at the rear. 

The results of the experiments are shown in figure 13. At the lower Rossby 
numbers (e.g. at U / n b  - 0.1) the velocity ahead of the body was significantly 
greater than that behind, as indicated by the theory of Lighthill (1967). However, 
contrary to the theory, the waves at  the higher Rossby numbers were not as 
powerfully excited ahead of the body as those behind, but this is probably 
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because the group velocity of the waves only slightly exceeds the velocity of 
the body. As a result the motion of the body does not last for a sufficient period 
of time to excite the flow ahead to near its ultimate steady state. 

The results also indicate that the particle velocity in the forward travelling 
wave form tends to zero as the velocity of the body approaches the maximum 
group velocity in the tube, 0.522Qb. An experiment made at  a Rossby number 
of 0.65 showed no motion at  all ahead of the body, whereas significant motions 
behind the body were observed at this Rossby number. Thus it appears that 
no (finite) disturbances propagate faster than the group velocity, suggesting that 
waves of finite amplitude and permanent form do not exist in this situation, in 
agreement with the analysis of Benjamin (1967). 

The maximum group velocity 
It is fairly difficult in an experiment to make an exact measurement of the group 
velocity. Benjamin & Barnard (1964) have made a rough measurement of the 
group velocity by determining the speed of propagation of an axial velocity 
in the Taylor column of half the velocity of the obstacle. Their estimate of the 
maximum group velocity was 0.48Qb. 

Obstacle velocity Wave form at first Wave form at second 
observation point observation point 

FIGURE 14. Illustration of the method used to measure the group velocity. 

Attempts have been made during this investigation to measure the group 
velocity by determining the speed of propagation of a discontinuity in the wave 
form: the idea is illustrated in figure 14, from which we see that the discontinuity 
was produced by suddenly reversing the direction of motion of the body. As 
the wave travels along the tube the discontinuity becomes less distinct, due to 
dispersion, thereby introducing an uncertainty to the measurement, indicated 
approximately in figure 14 by the At’s. Accordingly it was decided to charac- 
terize the discontinuity by that part of the wave form corresponding to zero 
particle velocity. Because the wave form dispersed by only a small amount be- 
tween the two observation points this characterization should be fairly accurate. 
Some measurements of the group velocity (C,), are shown in table 1 : the mean 
value of these results gives an estimate of 0.512Qb (with a standard deviation 
of 0-092Qb) which is very close to the theoretical value of 0.522Qb. 



Experi- 
ment A B C D E P G 

U / n b  0.029 0.067 0.050 0.054 0.049 0.045 0.045 
C J a b  0.526 0.510 0.514 0.521 0.509 0.509 0.496 

Notes: (i) The body was moved towards the observation points and then away from them 
for all the experiments except F ,  where the opposite is true. (ii) Experiment G was made 
with an annular body, i.e. one which blocked the area of the tube in the annulus between 
the radius a and the wall of the tube. (iii) Experiment E waa made in a liquid with a kine- 
matic viscosity 3.09 times greater than that of water a t  20 "C. 

TABLE 1 

5. General comments 
Experiments made at  very low Rossby numbers (Taylor 1922; Long 1953; 

Maxworthy 1968) show that fluid is pushed ahead of a body moving along the 
axis. Taylor (1922) and (Long 1953) also observed the flow at Rossby numbers 
around 0.2-0-4 and both found that, above some critical value of the Rossby 
number, the body no longer pushes a column of fluid ahead of itself, but their 
estimates for the ' critical' Rossby number differ widely-about I/. in Taylor's 
experiments and 0.23 in Long's. No adequate theoretical calculation has yet 
been made to estimate this ' critical ' Rossby number. 

The present experiments have been made over a much wider range of Rossby 
numbers than covered by the previous workers and the results suggest that, 
even a t  very high Rossby numbers, there is a significant influence far ahead 
of the body. The results of the experiments made in the long tube are in very 
good agreement with the theoretical models (cf. Lighthill 1967; Benjamin & 
Barnard 1964) : the form of the disturbances agrees very closely with a normal- 
mode theory and an approximate measurement of the maximum group velocity 
is near the theoretical value; in addition, the results indicate that no motions 
propagate ahead of the body when its velocity exceeds the maximum group 
velocity of the waves. An interesting feature of these experiments is that the 
body may generate disturbances in which the particle velocities on the axis 
exceed the velocity of the body. 

In a fluid of large radial extent the forward influence of a sphere has been 
measured as a function of the Rossby number: the results are compared (cf. 
figure 6) with a fairly crude theoretical estimate of this function and the two are 
in very good agreement considering the approximations made in the calculation. 
Thus in view of the good general agreement of the experimental results with the 
predictions made from the low Rossby number theories it is felt that the motion 
of the sphere generates the complete spectrum of wave modes, implying (see 
Lighthill 1967) that there is a forward influence at  all Rossby numbers, a con- 
tention which is supported by the theoretical work of Stewarhon (1958, 1968), 
and in particular by the work of Benjamin (1969). 

If these contentions are correct, it then appears that the interpretations of the 
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low Rossby number theories used to make the theoretical estimates shown in 
figure 6 may give a fairly good indication of the flow field ahead of the body 
a t  all Rossby numbers. Thus, following Greenspan’s (1968) calculation, we have 
roughly sketched in figure 15 the form we expect the flow field to take. At large 
Rossby numbers no fluid is blocked by the sphere, although a finite influence 
extends far upstream, and a t  very large Rossby numbers the streamline pattern 
begins to take on the appearance of the familiar potential-flow pattern. When 

Velocity profiles 

Streamlines relative to the cylinder 

F I G ~ E  15. A sketch of the form of the conjectured flow patterns at various Rossby 
numbers. (a) UlQa > 0.68; ( b )  0-33 < U / h  < 0.68; (c) the first pattern for U/Qa < 0.33. 

the Rossby number drops below about 0.68, according to the interpretation of 
Greenspan’s analysis, the particle velocity on the axis exceeds the velocity of 
the body and the necessary condition for the blocking effect is satisfied; thus 
the possibility arises of closed streamlines ahead of the body, as indicated in 
figure 15 (b ) .  At lower Rossbynumbers the flow pattern becomes more complicated 
(cf. figure 15(c)). 

These ideas are largely conjectural (and they neglect the possibility that these 
flows may not be stable), but if the motions do develop in the way described 
then the salient features of the flows (such as particle velocities well in excess of 
the velocity of the body) should readily be observed in experiments.? We recall 
that, in the long cylindrical tube, particle velocities in excess of the velocity of 
the body have been observed. 

Thus, from the results for the motions ahead of a sphere as a function of the 
Rossby number (cf. figure 6 ) ,  and from considerations of the kind just described 
it is felt that Greenspan’s conjecture on the blocking phenomenon is fairly 
accurate, so that an ever-lengthening column of fluid is trapped in front of the 
sphere at all values of the Rossby number less than a critical value which is 
about 0.7. 

lower Rossby numbers. 
t The apparatus used for these experiments unfortunately could not be used at the 
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FIGURE 2. The distortion of a dye line due to the motion of a sphere towards it. Tho 
original position of the dye lines coincided with the wires that stretch transversely across 
the tube. Tho sphere has travelled a distance 12a along the axis at a Rossby number 
( U / Q n )  of 0.834. The wire stretched in the axial direction is attached to the mall of the 
container. 

PRITCHARD (Facing p. 464) 
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FIGURE 7 .  A sequence of photographs showing, a t  successive half-periods of rotation, 
the passage of a wave along a tube. The observation point is 25b froin the obstacle; 
U/Qb = 0.055. 
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